
Analysis, Reporting and Visualization

Python-based Analysis
Infrastructure

DataSource/DataSink Classes
for Retrieval and Storage of

LDMS Data

Extensible Transform Classes
for Efficient, Pipelined Analysis

Grafana Dashboard Support

Python
Infrastructure

Simply and easy to prototype new
analysis

Comprehensive Numpy and SciPy
support libraries

Data plane in C for performance

Control plane in Python for
accelerated development

DataSource/DataSink Classes

Generic interface data that supports
multiple storage formats

SQL Familiar API Interfaces to Ease Debug/Development

DataSource Class
• Single base class to access various storage backends
• API designed to facilitate analysis that would work with CSV, SOS, or other

data sources
• DataSource.config

• Specify where and how data is to be accessed
• Parameters may be specific to each back-end

• DataSource.select
• SQL like syntax for identifying what, where and in what order the data is to be

returned
• DataSource.show

• Present the data for output
• DataSource.get_results

• Return data for analysis

DataSource – open and configure

DataSource – show a particular schema

DataSource – select data
• column list specifies which data from schema is returned
• from_ specifies which schema the data comes from
• where clause specifies select conditions
• order_by specifies the index

DataSource – show results
• Useful for verifying your select conditions during development
• Exploring the available data

DataSource – controlling column formatting
• Columns can be formatted/transformed on input using a column-
specification

DataSource – where conditions are ANDed

DataSet Class
• Encapsulates data returned by a DataSource
• Intended to accelerate development of analysis by simplifying:
• Accessing data series from a DataSource
• Mathematical operations on data series
• Combining data series together

• Design objectives:
• Keep simple things simple
• Make hard things easier

DataSet – a collection of data series
• Series in a DataSet are named:
• matches it’s name in the DataSource.select statement, or
• is specified directly by the programmer

• Internally, a series in a DataSet is a Numpy array
• All series in the same set have the same length
• len(series) is the buffer size
• series.get_series_size() is the amount of data stored in the buffer

• A series from a DataSet is accessed by name or by index, e.g.
• timeSet = theSet[‘timestamp’]
• timeSet = theSet[0]

DataSet – accessing series data
• dataset[‘’] returns another DataSet containing the series
• dataset.array(‘’) returns the numpy array for that series
• The 1st approach makes algebra easier, e.g.
• cpi = res[‘PAPI_TOT_CYC’] / res[‘PAPI_TOT_INS’]

DataSet – algebraic result naming
• The name of a series that is the result of algebraic operations is “left-

hand series name” “op” “right-hand series name”

• More complex expressions work as expected

• Obviously, this could get messy ...

DataSet – Controlling the series names
• Series names can be renamed algebraically or functionally

• res >>= ‘newName’
• res.rename(‘oldName’, ‘newName’)

• Use the >>= op when your DataSet contains only a single series
• Use the function when your DataSet contains many series

DataSet – Putting it all together
• All of these operations can be done in a single assignment expression

• Typicaly this is how a result would be calculated

DataSet – Combining results
• DataSets can be combined together with the <<= operation

DataSet – Displaying Results
• DataSets can be displayed using the show method

• The limit parameter allows you to limit the number of rows shown

DataSet – min/max
• DataSets support some common statistical operations

DataSet – mean/std
• DataSets support some common statistical operations

Transform Class
• A base class for DataSet vector operations

• Maintains a stack of DataSet
• Transform operations pop arguments from the stack, and

• Push results to the stack

• Implements a set of built-in transforms
• Column-wise:

• +, -, *, /

• Row-wise:

• histogram, 1st-difference, std, mean, min, max, etc…

• Supports grouping of data by a series, for row-wise transforms

• e.g. component_id, aries_rtr_id, etc…

• Can be extended with new operations as required

• Simple, “intuitive” syntax:
• x.dup()

• x[‘-’]([‘MemTotal’, ‘MemFree’])

• x.append(series=[‘MemTotal])

• x[‘/’]([‘MemTotal-MemFree’ , ‘MemTotal’], result=‘Mem_Used_Ratio’)

Transform – group-by functionality
• Row-wise operations are challenging when series are interwoven in

time, e.g.
• !"#$%, '(#)(*$*!%, +,-.$%%
• !"#$%, '(#)(*$*!/, +,-.$/%
• !"#$%, '(#)(*$*!0, +,-.$0%
• !"#$%, '(#)(*$*!1, +,-.$1%
• …

• A 1st-difference of this is not easy because the values are not
sequential in the array.
• The group_name parameter to the Transform row-wise functions

performs this data management function ‘automatically’ regardless of
the ordering of the group column in the input deck

Transform – group-by functionality

Transform – group-by functionality
• Post transform data organization
• Data ordered by group column

Putting it all together
• PAPI Example ...

DataSink Class
• Ouput analog of the DataSource Class
• API designed to facilitate analysis that would work with CSV, SOS, or

other data sources
• DataSink.config
• Specify where and how data is to be stored
• Parameters may be specific to each back-end

• DataSink.insert
• SQL like syntax for identifying what data is to be stored

• DataSink.put_results
• Store data from analysis

DataSink Class –CSV Example
Configure the CSV data sink
csv = CsvDataSink()
csv.config(path="./netstat.csv", header=True)
csv.insert(

[
Sos.ColSpec("timestamp", cvt_fn=format_timestamp),
Sos.ColSpec("component_id", cvt_fn=int),
Sos.ColSpec("job_id", cvt_fn=int),
"rx_bytes#p7p2_diff",
"tx_bytes#p7p2_diff",
"rx_packets#p7p2_diff",
"tx_packets#p7p2_diff"

],
into="netstat")

DataSink Class –SOS Example
Configure the Sos data sink
sink = SosDataSink()
sink.config(path="/ORION_DATA/Mutrino_Results", create=True)
sink.insert(

sink.Metric_Columns +
[

"rx_bytes#p7p2_diff",
"tx_bytes#p7p2_diff",
"rx_packets#p7p2_diff",
"tx_packets#p7p2_diff"

],
into = { "schema" : "netstat", "attrs" :

sink.Metric_Attrs +
[

{ "name" : "rx_bytes#p7p2_diff", "type" : "double" },
{ "name" : "tx_bytes#p7p2_diff", "type" : "double" },
{ "name" : "rx_packets#p7p2_diff", "type" : "double" },
{ "name" : "tx_packets#p7p2_diff", "type" : "double" }

]
+ sink.Metric_Joins

}
)

Streaming Analysis
• src = Configure the DataSource
• sink = Configure the DataSink
• x = Transform(src, sink)
• rc = x.begin()
• while rc:
• x.this().and().that()
• rc = x.next()

