Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Flux ControlNet] Support Xlabs ControlNet in diffusers #9378

Open
sayakpaul opened this issue Sep 6, 2024 · 7 comments · May be fixed by #9385
Open

[Flux ControlNet] Support Xlabs ControlNet in diffusers #9378

sayakpaul opened this issue Sep 6, 2024 · 7 comments · May be fixed by #9385

Comments

@sayakpaul
Copy link
Member

It'd be great to have XLabs ControlNets supported in diffusers. We already support their LoRAs.

Code: https://github.com/XLabs-AI/x-flux/
Checkpoint: https://huggingface.co/XLabs-AI/flux-controlnet-depth-v3

Related issue: #9301

Pinging @chenbinghui1 in case you're interested in contributing this.

@AnandK27
Copy link
Contributor

AnandK27 commented Sep 6, 2024

Hey @sayakpaul, I can take it up if it's possible!
Going through the forward process of both controlnets, these are the key differences I noticed:

  • The controlnet condition in XLabs are passed through a image hint block before adding.
  • The text embeddings are encoded in a different manner but looks straightforward.
  • There are double blocks rather block and single block in diffusers. (maybe tricky)
  • Weirdly there is no conditioning scale in XLabs implementation.

@gchhablani
Copy link

Hey @sayakpaul
I am interested in working on this one.
Will get started at my end.

@caoandong
Copy link

Here you go:

Modified X-Flux ControlNet

Main changes from the current flux controlnet:

  • Extra modules input_hint_block. Note that the controlnet condition is not pass through the vae and instead directly pass through the input hint blocks.
  • Only 2 double blocks transformer_blocks and no single blocks.
  • Only controlnet_blocks and no controlnet_single_blocks.
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from einops import rearrange

from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.controlnet import BaseOutput, zero_module
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class FluxControlNetOutput(BaseOutput):
    controlnet_block_samples: Tuple[torch.Tensor]
    controlnet_single_block_samples: Tuple[torch.Tensor]


class XFluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin): # type: ignore
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 64,
        num_layers: int = 19,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 4096,
        pooled_projection_dim: int = 768,
        guidance_embeds: bool = False,
        axes_dims_rope: List[int] = [16, 56, 56],
    ):
        super().__init__()
        self.out_channels = in_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
        text_time_guidance_cls = (
            CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
        )
        self.time_text_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
        )

        self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
        self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for i in range(num_layers)
            ]
        )

        # Input blocks
        self.input_hint_block = nn.Sequential(
            nn.Conv2d(3, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 16, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(16, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 16, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(16, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 16, 3, padding=1, stride=2),
            nn.SiLU(),
            zero_module(nn.Conv2d(16, 16, 3, padding=1))
        )

        # controlnet_blocks
        self.controlnet_blocks = nn.ModuleList([])
        for _ in range(len(self.transformer_blocks)):
            self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))

        self.controlnet_x_embedder = torch.nn.Linear(in_channels, self.inner_dim, bias=True)

        self.gradient_checkpointing = False

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self):
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @classmethod
    def from_transformer(
        cls,
        transformer,
        num_layers: int = 4,
        num_single_layers: int = 10,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        load_weights_from_transformer=True,
    ):
        config = transformer.config
        config["num_layers"] = num_layers
        config["num_single_layers"] = num_single_layers
        config["attention_head_dim"] = attention_head_dim
        config["num_attention_heads"] = num_attention_heads

        controlnet = cls(**config)

        if load_weights_from_transformer:
            controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
            controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
            controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
            controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
            controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
            controlnet.single_transformer_blocks.load_state_dict(
                transformer.single_transformer_blocks.state_dict(), strict=False
            )

            controlnet.controlnet_x_embedder = controlnet.controlnet_x_embedder

        return controlnet

    def forward(
        self,
        hidden_states: torch.Tensor,
        controlnet_cond: torch.Tensor,
        conditioning_scale: float = 1.0,
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """
        The [`FluxTransformer2DModel`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            controlnet_cond (`torch.Tensor`):
                The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
            conditioning_scale (`float`, defaults to `1.0`):
                The scale factor for ControlNet outputs.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
                from the embeddings of input conditions.
            timestep ( `torch.LongTensor`):
                Used to indicate denoising step.
            block_controlnet_hidden_states: (`list` of `torch.Tensor`):
                A list of tensors that if specified are added to the residuals of transformer blocks.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )
        hidden_states = self.x_embedder(hidden_states)

        # add
        controlnet_cond = self.input_hint_block(controlnet_cond)
        controlnet_cond = rearrange(controlnet_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) # flatten into patch height and patch width (ph, pw) across all channels, so each batch entry is a sequence of patches that's got c * patch-pixel elements.

        hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None
        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if txt_ids.ndim == 3:
            logger.warning(
                "Passing `txt_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            logger.warning(
                "Passing `img_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            img_ids = img_ids[0]

        ids = torch.cat((txt_ids, img_ids), dim=0)
        image_rotary_emb = self.pos_embed(ids)

        block_samples = ()
        for index_block, block in enumerate(self.transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                )
            block_samples = block_samples + (hidden_states,) # type: ignore

        # controlnet block
        controlnet_block_samples = ()
        for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
            block_sample = controlnet_block(block_sample)
            controlnet_block_samples = controlnet_block_samples + (block_sample,)

        # scaling
        controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (controlnet_block_samples,)

        return FluxControlNetOutput( # type: ignore
            controlnet_block_samples=controlnet_block_samples,
            controlnet_single_block_samples=None,
        )

Modified Flux Transformer

The main difference from the original Flux transformer is that we skip the single blocks and pass an optional args interval_control=2 instead of calculating it inside of the forward function. This change is very minor and can probably be refactored.

# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Any, Dict, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import (
    Attention,
    AttentionProcessor,
    FluxAttnProcessor2_0,
    FusedFluxAttnProcessor2_0,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@maybe_allow_in_graph
class FluxSingleTransformerBlock(nn.Module):
    r"""
    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.

    Reference: https://arxiv.org/abs/2403.03206

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
            processing of `context` conditions.
    """

    def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
        super().__init__()
        self.mlp_hidden_dim = int(dim * mlp_ratio)

        self.norm = AdaLayerNormZeroSingle(dim)
        self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
        self.act_mlp = nn.GELU(approximate="tanh")
        self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)

        processor = FluxAttnProcessor2_0()
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            bias=True,
            processor=processor,
            qk_norm="rms_norm",
            eps=1e-6,
            pre_only=True,
        )

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: torch.FloatTensor,
        image_rotary_emb=None,
    ):
        residual = hidden_states
        norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
        mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))

        attn_output = self.attn(
            hidden_states=norm_hidden_states,
            image_rotary_emb=image_rotary_emb,
        )

        hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
        gate = gate.unsqueeze(1)
        hidden_states = gate * self.proj_out(hidden_states)
        hidden_states = residual + hidden_states
        if hidden_states.dtype == torch.float16:
            hidden_states = hidden_states.clip(-65504, 65504)

        return hidden_states


@maybe_allow_in_graph
class FluxTransformerBlock(nn.Module):
    r"""
    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.

    Reference: https://arxiv.org/abs/2403.03206

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
            processing of `context` conditions.
    """

    def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
        super().__init__()

        self.norm1 = AdaLayerNormZero(dim)

        self.norm1_context = AdaLayerNormZero(dim)

        if hasattr(F, "scaled_dot_product_attention"):
            processor = FluxAttnProcessor2_0()
        else:
            raise ValueError(
                "The current PyTorch version does not support the `scaled_dot_product_attention` function."
            )
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            added_kv_proj_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            context_pre_only=False,
            bias=True,
            processor=processor,
            qk_norm=qk_norm,
            eps=eps,
        )

        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor,
        temb: torch.FloatTensor,
        image_rotary_emb=None,
    ):
        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)

        norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
            encoder_hidden_states, emb=temb
        )

        # Attention.
        attn_output, context_attn_output = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
        )

        # Process attention outputs for the `hidden_states`.
        attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = hidden_states + attn_output

        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = hidden_states + ff_output

        # Process attention outputs for the `encoder_hidden_states`.

        context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
        encoder_hidden_states = encoder_hidden_states + context_attn_output

        norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
        norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]

        context_ff_output = self.ff_context(norm_encoder_hidden_states)
        encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
        if encoder_hidden_states.dtype == torch.float16:
            encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)

        return encoder_hidden_states, hidden_states


class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): # type: ignore
    """
    The Transformer model introduced in Flux.

    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

    Parameters:
        patch_size (`int`): Patch size to turn the input data into small patches.
        in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
        num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
        num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
        attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
        num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
        joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
        guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]

    @register_to_config
    def __init__(
        self,
        patch_size: int = 1,
        in_channels: int = 64,
        num_layers: int = 19,
        num_single_layers: int = 38,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 4096,
        pooled_projection_dim: int = 768,
        guidance_embeds: bool = False,
        axes_dims_rope: Tuple[int] = (16, 56, 56),
    ):
        super().__init__()
        self.out_channels = in_channels
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim

        self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)

        text_time_guidance_cls = (
            CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
        )
        self.time_text_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
        )

        self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
        self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_layers)
            ]
        )

        self.single_transformer_blocks = nn.ModuleList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_single_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)

        self.gradient_checkpointing = False

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
    def fuse_qkv_projections(self):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

        self.set_attn_processor(FusedFluxAttnProcessor2_0())

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_block_samples=None,
        return_dict: bool = True,
        interval_control=2,
    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """
        The [`FluxTransformer2DModel`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
                from the embeddings of input conditions.
            timestep ( `torch.LongTensor`):
                Used to indicate denoising step.
            block_controlnet_hidden_states: (`list` of `torch.Tensor`):
                A list of tensors that if specified are added to the residuals of transformer blocks.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )
        hidden_states = self.x_embedder(hidden_states)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None
        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if txt_ids.ndim == 3:
            logger.warning(
                "Passing `txt_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            logger.warning(
                "Passing `img_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            img_ids = img_ids[0]
        ids = torch.cat((txt_ids, img_ids), dim=0)
        image_rotary_emb = self.pos_embed(ids)

        for index_block, block in enumerate(self.transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                )

            # controlnet residual
            if controlnet_block_samples is not None:
                hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        for index_block, block in enumerate(self.single_transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                )

        hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

Modified Flux ControlNet Pipeline

The main change is that we don't pass the controlnet condition through the vae.

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
from transformers import (
    CLIPTextModel,
    CLIPTokenizer,
    T5EncoderModel,
    T5TokenizerFast,
)

from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
from diffusers.models.autoencoders import AutoencoderKL
from diffusers.models.transformers import FluxTransformer2DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput


if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name



# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class XFluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
    r"""
    The Flux pipeline for text-to-image generation.

    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

    Args:
        transformer ([`FluxTransformer2DModel`]):
            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([`T5EncoderModel`]):
            [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
            the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`T5TokenizerFast`):
            Second Tokenizer of class
            [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
    _optional_components = []
    _callback_tensor_inputs = ["latents", "prompt_embeds"]

    def __init__(
        self,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        text_encoder_2: T5EncoderModel,
        tokenizer_2: T5TokenizerFast,
        transformer: FluxTransformer2DModel,
        controlnet: XFluxControlNetModel,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
            controlnet=controlnet,
        )
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
        )
        self.default_sample_size = 64

    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        num_images_per_prompt: int = 1,
        max_sequence_length: int = 512,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer_2(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_length=False,
            return_overflowing_tokens=False,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]

        dtype = self.text_encoder_2.dtype
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        _, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds

    def _get_clip_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        device: Optional[torch.device] = None,
    ):
        device = device or self._execution_device

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            return_overflowing_tokens=False,
            return_length=False,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )
        prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)

        # Use pooled output of CLIPTextModel
        prompt_embeds = prompt_embeds.pooler_output
        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds

    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        prompt_2: Union[str, List[str]],
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        max_sequence_length: int = 512,
        lora_scale: Optional[float] = None,
    ):
        r"""

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in all text-encoders
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder, lora_scale)
            if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # We only use the pooled prompt output from the CLIPTextModel
            pooled_prompt_embeds = self._get_clip_prompt_embeds(
                prompt=prompt,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
            )
            prompt_embeds = self._get_t5_prompt_embeds(
                prompt=prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
            )

        if self.text_encoder is not None:
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
        text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)

        return prompt_embeds, pooled_prompt_embeds, text_ids

    def check_inputs(
        self,
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=None,
        pooled_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
        max_sequence_length=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
            )

        if max_sequence_length is not None and max_sequence_length > 512:
            raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
    def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
        latent_image_ids = torch.zeros(height // 2, width // 2, 3)
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]

        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape

        latent_image_ids = latent_image_ids.reshape(
            latent_image_id_height * latent_image_id_width, latent_image_id_channels
        )

        return latent_image_ids.to(device=device, dtype=dtype)

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
        latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
        latents = latents.permute(0, 2, 4, 1, 3, 5)
        latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)

        return latents

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
    def _unpack_latents(latents, height, width, vae_scale_factor):
        batch_size, num_patches, channels = latents.shape

        height = height // vae_scale_factor
        width = width // vae_scale_factor

        latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
        latents = latents.permute(0, 3, 1, 4, 2, 5)

        latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)

        return latents

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        height = 2 * (int(height) // self.vae_scale_factor)
        width = 2 * (int(width) // self.vae_scale_factor)

        shape = (batch_size, num_channels_latents, height, width)

        if latents is not None:
            latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
            return latents.to(device=device, dtype=dtype), latent_image_ids

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)

        latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)

        return latents, latent_image_ids

    # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
    def prepare_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        if isinstance(image, torch.Tensor):
            pass
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 28,
        timesteps: List[int] = None,
        guidance_scale: float = 7.0,
        control_image: PipelineImageInput = None,
        control_mode: Optional[Union[int, List[int]]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 512,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                will be used instead
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            guidance_scale (`float`, *optional*, defaults to 7.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
                specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet.
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
            control_mode (`int` or `List[int]`,, *optional*, defaults to None):
                The control mode when applying ControlNet-Union.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
            is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
            images.
        """

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        dtype = self.transformer.dtype

        lora_scale = (
            self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
        )
        (
            prompt_embeds,
            pooled_prompt_embeds,
            text_ids,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )

        # 3. Prepare control image
        num_channels_latents = self.transformer.config.in_channels // 4

        control_image = self.prepare_image(
            image=control_image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            dtype=dtype,
        )
        height, width = control_image.shape[-2:]

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[1]
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.base_image_seq_len,
            self.scheduler.config.max_image_seq_len,
            self.scheduler.config.base_shift,
            self.scheduler.config.max_shift,
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )

        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latents.shape[0]).to(latents.dtype)

                # handle guidance
                if self.transformer.config.guidance_embeds:
                    guidance = torch.tensor([guidance_scale], device=device)
                    guidance = guidance.expand(latents.shape[0])
                else:
                    guidance = None

                # controlnet
                controlnet_block_samples = self.controlnet(
                    hidden_states=latents,
                    controlnet_cond=control_image,
                    conditioning_scale=controlnet_conditioning_scale,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=True,
                ).controlnet_block_samples

                noise_pred = self.transformer(
                    hidden_states=latents,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    controlnet_block_samples=controlnet_block_samples,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )[0]

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        if output_type == "latent":
            image = latents

        else:
            latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor

            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)

Conversion script

The following is the conversion script from the flux controlnet to the diffusers controlnet.

import argparse
from contextlib import nullcontext

import safetensors.torch
import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download

from diffusers import AutoencoderKL, FluxTransformer2DModel
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
from diffusers.utils.import_utils import is_accelerate_available


"""
# Transformer

python scripts/convert_flux_to_diffusers.py  \
--original_state_dict_repo_id "black-forest-labs/FLUX.1-schnell" \
--filename "flux1-schnell.sft"
--output_path "flux-schnell" \
--transformer
"""

"""
# VAE

python scripts/convert_flux_to_diffusers.py  \
--original_state_dict_repo_id "black-forest-labs/FLUX.1-schnell" \
--filename "ae.sft"
--output_path "flux-schnell" \
--vae
"""

CTX = init_empty_weights if is_accelerate_available else nullcontext

def load_original_checkpoint(ckpt_path):
    original_state_dict = safetensors.torch.load_file(ckpt_path)
    return original_state_dict


# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
def swap_scale_shift(weight):
    shift, scale = weight.chunk(2, dim=0)
    new_weight = torch.cat([scale, shift], dim=0)
    return new_weight


def convert_flux_transformer_checkpoint_to_diffusers(
    original_state_dict, 
    num_layers,
):
    converted_state_dict = {}

    ## time_text_embed.timestep_embedder <-  time_in
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
        "time_in.in_layer.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop(
        "time_in.in_layer.bias"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
        "time_in.out_layer.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop(
        "time_in.out_layer.bias"
    )

    ## time_text_embed.text_embedder <- vector_in
    converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop(
        "vector_in.in_layer.weight"
    )
    converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop(
        "vector_in.in_layer.bias"
    )
    converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop(
        "vector_in.out_layer.weight"
    )
    converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop(
        "vector_in.out_layer.bias"
    )

    # guidance
    has_guidance = any("guidance" in k for k in original_state_dict)
    if has_guidance:
        converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = original_state_dict.pop(
            "guidance_in.in_layer.weight"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = original_state_dict.pop(
            "guidance_in.in_layer.bias"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = original_state_dict.pop(
            "guidance_in.out_layer.weight"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = original_state_dict.pop(
            "guidance_in.out_layer.bias"
        )

    # context_embedder
    converted_state_dict["context_embedder.weight"] = original_state_dict.pop("txt_in.weight")
    converted_state_dict["context_embedder.bias"] = original_state_dict.pop("txt_in.bias")

    # x_embedder
    converted_state_dict["x_embedder.weight"] = original_state_dict.pop("img_in.weight")
    converted_state_dict["x_embedder.bias"] = original_state_dict.pop("img_in.bias")

    for key, tensor in original_state_dict.items():
        if key.startswith("input_hint_block."):
            # input hint blocks
            converted_state_dict[key] = tensor
        elif key.startswith("controlnet_blocks."):
            # controlnet blocks
            converted_state_dict[key] = tensor

    converted_state_dict["controlnet_x_embedder.bias"] = original_state_dict["pos_embed_input.bias"]
    converted_state_dict["controlnet_x_embedder.weight"] = original_state_dict["pos_embed_input.weight"]

    # double transformer blocks
    for i in range(num_layers):
        block_prefix = f"transformer_blocks.{i}."
        # norms.
        ## norm1
        converted_state_dict[f"{block_prefix}norm1.linear.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.img_mod.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm1.linear.bias"] = original_state_dict.pop(
            f"double_blocks.{i}.img_mod.lin.bias"
        )
        ## norm1_context
        converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_mod.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_mod.lin.bias"
        )
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(
            original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0
        )
        context_q, context_k, context_v = torch.chunk(
            original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
        # qk_norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.img_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.img_attn.norm.key_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
        )
        # ff img_mlp
        converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.img_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = original_state_dict.pop(
            f"double_blocks.{i}.img_mlp.0.bias"
        )
        converted_state_dict[f"{block_prefix}ff.net.2.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.img_mlp.2.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.2.bias"] = original_state_dict.pop(
            f"double_blocks.{i}.img_mlp.2.bias"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_mlp.0.bias"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_mlp.2.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_mlp.2.bias"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.img_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = original_state_dict.pop(
            f"double_blocks.{i}.img_attn.proj.bias"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_attn.proj.bias"
        )

    return converted_state_dict

@caoandong
Copy link

One thing that's a bit odd: I tried to pass the same torch.randn arguments to the x-flux and diffusers controlnet, and sometimes get slightly different outputs, especially when calculating the timestep embedding and the double blocks. Maybe it's due to the different ways x-flux and diffusers cast the numbers from float32 to bfloat16? Still investigating.

@sayakpaul
Copy link
Member Author

One thing that's a bit odd: I tried to pass the same torch.randn arguments to the x-flux and diffusers controlnet, and sometimes get slightly different outputs, especially when calculating the timestep embedding and the double blocks. Maybe it's due to the different ways x-flux and diffusers cast the numbers from float32 to bfloat16? Still investigating.

Thanks so much @caoandong! Do you think you could open a draft PR with your changes and we can jam there? That will be easier IMO :)

Do we know the point in code from where the outputs start to diverge? For starters, I would keep everything in fp32 and then check. Let us know about your findings.

@caoandong
Copy link

One thing that's a bit odd: I tried to pass the same torch.randn arguments to the x-flux and diffusers controlnet, and sometimes get slightly different outputs, especially when calculating the timestep embedding and the double blocks. Maybe it's due to the different ways x-flux and diffusers cast the numbers from float32 to bfloat16? Still investigating.

Thanks so much @caoandong! Do you think you could open a draft PR with your changes and we can jam there? That will be easier IMO :)

Do we know the point in code from where the outputs start to diverge? For starters, I would keep everything in fp32 and then check. Let us know about your findings.

Certainly! I will keep digging, but the output starts to slightly diverge after timestep embedding, and also diverges further after passing through the first double block. I'll include a reproducible example to show that.

@pphysico
Copy link

One thing that's a bit odd: I tried to pass the same torch.randn arguments to the x-flux and diffusers controlnet, and sometimes get slightly different outputs, especially when calculating the timestep embedding and the double blocks. Maybe it's due to the different ways x-flux and diffusers cast the numbers from float32 to bfloat16? Still investigating.

Thanks so much @caoandong! Do you think you could open a draft PR with your changes and we can jam there? That will be easier IMO :)

Do we know the point in code from where the outputs start to diverge? For starters, I would keep everything in fp32 and then check. Let us know about your findings.

Hi! thank you for the work , i want to ask if we will support xlabs controlnet inpaint inference? Thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging a pull request may close this issue.

5 participants