From 1a3b81348448aeaab93ef0282a975cb6919bbbba Mon Sep 17 00:00:00 2001 From: piontek Date: Thu, 13 Jun 2024 09:40:01 +0200 Subject: [PATCH] change KotzWenz damage implementation to allow using high/low/median/mean damages from the distribution, using an R script --- config/default.cfg | 1 + config/scenario_config_NGFS_v5.csv | 94 ++++++------------- main.gms | 4 + modules/50_damages/BurkeLike/not_used.txt | 1 + modules/50_damages/DiceLike/not_used.txt | 1 + modules/50_damages/KWLike/not_used.txt | 1 + modules/50_damages/KWTCint/not_used.txt | 1 + modules/50_damages/KW_SE/not_used.txt | 1 + modules/50_damages/KotzWenz/datainput.gms | 41 +------- modules/50_damages/KotzWenz/declarations.gms | 14 +-- modules/50_damages/KotzWenz/not_used.txt | 1 + modules/50_damages/KotzWenz/postsolve.gms | 56 ++--------- modules/50_damages/KotzWenz/sets.gms | 5 + modules/50_damages/Labor/not_used.txt | 1 + modules/50_damages/TC/not_used.txt | 1 + modules/50_damages/off/not_used.txt | 1 + .../BurkeLikeItr/not_used.txt | 1 + .../DiceLikeItr/not_used.txt | 1 + .../KWTCintItr/not_used.txt | 1 + .../KW_SEitr/not_used.txt | 1 + .../KWlikeItr/not_used.txt | 1 + .../KWlikeItrCPnash/not_used.txt | 1 + .../KWlikeItrCPreg/not_used.txt | 1 + .../KotzWenzCPreg/not_used.txt | 2 +- .../KotzWenzCPreg/postsolve.gms | 3 +- .../KotzWenzItr/not_used.txt | 2 +- .../KotzWenzItr/postsolve.gms | 3 +- .../51_internalizeDamages/LabItr/not_used.txt | 1 + .../51_internalizeDamages/TCitr/not_used.txt | 1 + .../51_internalizeDamages/off/not_used.txt | 1 + scripts/input/run_KotzWenz_damages.R | 76 +++++++++++++++ 31 files changed, 152 insertions(+), 168 deletions(-) create mode 100644 scripts/input/run_KotzWenz_damages.R diff --git a/config/default.cfg b/config/default.cfg index 99e240b39..6b5cab02f 100644 --- a/config/default.cfg +++ b/config/default.cfg @@ -136,6 +136,7 @@ cfg$files2export$start <- c("config/conopt3.opt", "scripts/input/exoGAINSAirpollutants.R", "scripts/input/climate_assessment_run.R", "scripts/input/climate_assessment_temperatureImpulseResponse.R", + "scripts/input/run_KotzWenz_damages.R", ".Rprofile", "config/mappingEDGEtoREMINDsectors.csv", "modules/11_aerosols/exoGAINS/input/ef_gains.cs4r", diff --git a/config/scenario_config_NGFS_v5.csv b/config/scenario_config_NGFS_v5.csv index 507d449ae..19964ecf5 100644 --- a/config/scenario_config_NGFS_v5.csv +++ b/config/scenario_config_NGFS_v5.csv @@ -1,67 +1,27 @@ -title;start;copyConfigFrom;cm_import_tax;cm_demScen;cm_oil_scen;cm_gas_scen;cm_coal_scen;CES_parameters;slurmConfig;climate;downscaleTemperature;cm_magicc_calibrateTemperature2000;damages;cm_damage_KWSE;internalizeDamages;cm_magicc_config;cm_magicc_temperatureImpulseResponse;cm_damage_DiceLike_specification;cm_damages_BurkeLike_persistenceTime;cm_damages_BurkeLike_specification;cm_damages_SccHorizon;cm_VRE_supply_assumptions;c_CES_calibration_new_structure;buildings;transport;industry;cm_wasteIncinerationCCSshare;cm_DiscRateScen;c_shBioTrans;cm_EDGEtr_scen;cm_reducCostB;cm_CES_calibration_default_prices;cm_CO2TaxSectorMarkup;c_ccsinjecratescen;c_ccsinjecrateRegi;cm_33DAC;cm_33EW;cm_bioenergy_SustTax;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;c_budgetCO2from2020;carbonprice;carbonpriceRegi;regipol;cm_implicitQttyTarget;cm_implicitQttyTarget_tolerance;cm_NDC_version;cm_netZeroScen;cm_co2_tax_2020;c_peakBudgYr;c_taxCO2inc_after_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_regi_earlyreti_rate;c_tech_earlyreti_rate;cm_fetaxscen;cm_co2_tax_growth;cm_maxProdBiolc;c_ccscapratescen;techpol;c_techAssumptScen;cm_nucscen;cm_so2tax_scen;cm_multigasscen;cm_LU_emi_scen;cm_tradecostBio;cm_1stgen_phaseout;c_SSP_forcing_adjust;cm_APscen;water;cm_startyear;path_gdx;path_gdx_ref;path_gdx_refpolicycost;path_gdx_bau;description -# ___Calibration___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;initial value;initial value;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP2-Base_covidCalib;0;;;gdp_SSP2EU;;;;calibrate;14;off;off;uncalibrated;off;0;off;OLDDEFAULT;off;HowardNonCatastrophic;15;0;100;0;1;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;;1;;;;1.5;none;0;off;0;none;none;;;;;;-1;2100;3;2050;1;;;3;1.05;off;1;none;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;; -SSP2-lowDem_calib;0;SSP2-Base_covidCalib;;gdp_SSP2_lowEn;;;;;1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -# ___Baselines___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP2-Base;0;;;gdp_SSP2EU;medOil;medGas;medCoal;load;5;off;off;uncalibrated;off;0;off;RCP26_50;off;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix1;none;0.01;;1;;;;1.5;none;0;off;0;none;none;;;;;;-1;2100;3;2050;1;;;3;1.05;off;1;none;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;SSP2-Base: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -SSP2-Base_d50;0;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KWLike;0;;RCP26_50;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d50: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -SSP2-Base_d95;0;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KWLike;0;;RCP26_95;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d95: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -SSP2-Base_d50high;d50high;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KW_SE;1.96;;RCP26_50;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d50: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -SSP2-Base_d95high;d95high;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KW_SE;1.96;;RCP26_95;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d95: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -# ___NO_DAMAGES___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -h_cpol_noUkr;NGFS;SSP2-Base;;;;;;;;;;;;;;;;;30;;;;;;;;;;;Mix2;none;;;;;0;0;1.5;rcp45;3;off;0;NPi;none;;;;;;1;2100;;2050;9;;;3;1.05;100;;NPi2018;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;h_cpol: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -h_cpol;NGFS;h_cpol_noUkr;EUR.pegas.worldPricemarkup 0.5;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;;h_cpol_noUkr;;; -h_ndc;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;;;;Mix3;none;;;1;;;;1.5;rcp45;3;globallyOptimal;0;NDC;none;;;;;;1;2100;3;2050;;;;;;;;NDC;;;;3;;;;;;;2025;;h_cpol_noUkr;h_cpol;h_cpol_noUkr;h_ndc: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -o_1p5c;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;Mix4;heatpumps;;;1;;;;1.5;rcp20;9;globallyOptimal;560;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 4300, 2080.GLO.tax.t.CCS.biomass 4300;0.1;;;200;2045;6;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol_noUkr;h_cpol;;o_1p5c: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -o_lowdem;NGFS;o_1p5c;;gdp_SSP2_lowEn;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;;;;;;GLO 0.00125, CAZ_regi 0.0045, CHA_regi 0.004, EUR_regi 0.0045, IND_regi 0.004, JPN_regi 0.002, USA_regi 0.002;;;;;;;560;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 3800, 2080.GLO.tax.t.CCS.biomass 3800;0.1;;;;;1;;;;;;;;;;;;;;;;;;;;2025;;h_cpol_noUkr;h_cpol;;o_lowdem: Low Demand scenario -o_2c;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.5;;;Mix4;heatpumps;;;1;;;;1.5;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 2300, 2080.GLO.tax.t.CCS.biomass 2300;;;NGFS_v4_20pc;100;2080;3;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol_noUkr;h_cpol;;o_2c: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -d_delfrag;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.5;;;Mix3;heatpumps;;;;GLO 0.00125, CAZ_regi 0.0045, CHA_regi 0.004, EUR_regi 0.0045, IND_regi 0.004, JPN_regi 0.002, USA_regi 0.002;;;1.5;rcp26;9;globallyOptimal;1010;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 2300, 2080.GLO.tax.t.CCS.biomass 2300;;;;100;2080;;2050;;;;;;;;NDC;;;;2;;;;;;;2035;;h_cpol;h_cpol;;d_delfrag: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -d_strain;NGFS;d_delfrag;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;3;off;;NPi;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 2300, 2080.GLO.tax.t.CCS.biomass 2300;;;NGFS_v4_20pc;1;2100;;;;;;;;;;;;;;;;;;;;;2035;;h_cpol;h_cpol;;d_strain: Fragmented world -d_rap;0;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;Mix4;heatpumps;;GLO.trans 2, GLO.build 2;2;;;;1.5;rcp20;9;globallyOptimal;560;diffCurvPhaseIn2Lin;none;;;;;;200;2045;3;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol_noUkr;h_cpol;;d_rap: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -# ___WITH_DAMAGES___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -h_cpol_d50;d50;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol_noUkr;;;h_cpol_d50: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -h_cpol_d95;d95;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol_noUkr;;;h_cpol_d95: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -h_cpol_d50high;d50high;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol_noUkr;;;h_cpol_d50high: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -h_cpol_d95high;d95high;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol_noUkr;;;h_cpol_d95high: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -h_ndc_d50;d50;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol_noUkr;h_cpol_d50;SSP2-Base;h_ndc_d50: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -h_ndc_d95;d95;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol_noUkr;h_cpol_d95;SSP2-Base;h_ndc_d95: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -h_ndc_d50high;d50high;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol_noUkr;h_cpol_d50high;SSP2-Base;h_ndc_d50high: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -h_ndc_d95high;d95high;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol_noUkr;h_cpol_d95high;SSP2-Base;h_ndc_d95high: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -o_1p5c_d50;d50;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol_noUkr;h_cpol_d50;;o_1p5c_d50: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_1p5c_d95;d95;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol_noUkr;h_cpol_d95;;o_1p5c_d95: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_1p5c_d50high;d50high;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol_noUkr;h_cpol_d50high;;o_1p5c_d50high: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_1p5c_d95high;d95high;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol_noUkr;h_cpol_d95high;;o_1p5c_d95high: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_1p5c_d50_cpricereg;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol_noUkr;h_cpol;;o_1p5c_d50_cpricereg: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_1p5c_d95_cpricereg;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol_noUkr;h_cpol;;o_1p5c_d95_cpricereg: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_1p5c_dni50;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol_noUkr;h_cpol;;o_1p5c_dni50: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -o_1p5c_dni95;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol_noUkr;h_cpol;;o_1p5c_dni95: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -o_lowdem_d50;d50;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol_noUkr;h_cpol_d50;;o_lowdem_d50 -o_lowdem_d95;d95;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol_noUkr;h_cpol_d95;;o_lowdem_d95 -o_lowdem_d50high;d50high;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol_noUkr;h_cpol_d50high;;o_lowdem_d50high -o_lowdem_d95high;d95high;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol_noUkr;h_cpol_d95high;;o_lowdem_d95high -o_2c_d50;d50;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol_d50;;o_2c_d50: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_2c_d95;d95;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol_d95;;o_2c_d95: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_2c_d50high;d50high;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol_d50high;;o_2c_d50high: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_2c_d95high;d95high;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol_d95high;;o_2c_d95high: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_2c_d50_cpricereg;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol;;o_2c_d50_cpricereg: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. The Social Cost of Carbon is regional rather than globally uniform. -o_2c_d95_cpricereg;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol;;o_2c_d95_cpricereg: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. The Social Cost of Carbon is regional rather than globally uniform. -o_2c_dni50;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol;;o_2c_dni50: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -o_2c_dni50_fixCprice;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;0;;1050;exogenous;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol;;o_2c_dni50_fixCprice: a test run fixing the carbon price to the one from the fully integrated o_2c_d50 scenario -o_2c_fixCprice;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;off;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;0;;1050;exogenous;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol;;o_2c_fixCprice: a test run fixing the carbon price to the one from the fully integrated o_2c scenario -o_2c_dni95;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol;;o_2c_dni95: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -d_delfrag_d50;d50;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol_d50;h_cpol_d50;;d_delfrag_d50: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -d_delfrag_d95;d95;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol_d95;h_cpol_d95;;d_delfrag_d95: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -d_delfrag_d50high;d50high;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol_d50high;h_cpol_d50high;;d_delfrag_d50high: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -d_delfrag_d95high;d95high;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol_d95high;h_cpol_d95high;;d_delfrag_d95high: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -d_strain_d50;d50;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol_d50;h_cpol_d50;;d_strain_d50: Fragmented World -d_strain_d95;d95;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol_d95;h_cpol_d95;;d_strain_d95: Fragmented World -d_strain_d50high;d50high;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol_d50high;h_cpol_d50high;;d_strain_d50high: Fragmented World -d_strain_d95high;d95high;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol_d95high;h_cpol_d95high;;d_strain_d95high: Fragmented World -d_rap_d50;d50;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol_noUkr;h_cpol_d50;;d_rap_d50: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -d_rap_d95;d95;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol_noUkr;h_cpol_d95;;d_rap_d95: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -d_rap_d50high;d50high;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol_noUkr;h_cpol_d50high;;d_rap_d50high: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -d_rap_d95high;d95high;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol_noUkr;h_cpol_d95high;;d_rap_d95high: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_cba_d50;d50;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol_noUkr;h_cpol_d50;;o_cba_d50: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_cba_d95;d95;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol_noUkr;h_cpol_d95;;o_cba_d95: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_cba_d50high;d50high;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol_noUkr;h_cpol_d50high;;o_cba_d50high: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_cba_d95high;d95high;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol_noUkr;h_cpol_d95high;;o_cba_d95high: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +title;start;copyConfigFrom;cm_import_tax;cm_demScen;cm_oil_scen;cm_gas_scen;cm_coal_scen;CES_parameters;slurmConfig;climate;cm_magicc_calibrateTemperature2000;damages;cm_KotzWenzPerc;internalizeDamages;cm_magicc_config;cm_magicc_temperatureImpulseResponse;cm_damages_BurkeLike_specification;cm_damages_SccHorizon;cm_VRE_supply_assumptions;c_CES_calibration_new_structure;buildings;transport;industry;cm_wasteIncinerationCCSshare;cm_DiscRateScen;c_shBioTrans;cm_EDGEtr_scen;cm_reducCostB;cm_CES_calibration_default_prices;cm_CO2TaxSectorMarkup;c_ccsinjecratescen;c_ccsinjecrateRegi;cm_33DAC;cm_33EW;cm_bioenergy_SustTax;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;c_budgetCO2from2020;carbonprice;carbonpriceRegi;regipol;cm_implicitQttyTarget;cm_implicitQttyTarget_tolerance;cm_NDC_version;cm_netZeroScen;cm_co2_tax_2020;c_peakBudgYr;c_taxCO2inc_after_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_regi_earlyreti_rate;c_tech_earlyreti_rate;cm_fetaxscen;cm_co2_tax_growth;cm_maxProdBiolc;c_ccscapratescen;techpol;c_techAssumptScen;cm_nucscen;cm_so2tax_scen;cm_multigasscen;cm_LU_emi_scen;cm_tradecostBio;cm_1stgen_phaseout;c_SSP_forcing_adjust;cm_APscen;water;cm_startyear;path_gdx;path_gdx_ref;path_gdx_refpolicycost;path_gdx_bau;description +# ___Calibration___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;initial value;initial value;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP2-Base_covidCalib;0;;;gdp_SSP2EU;;;;calibrate;14;off;uncalibrated;off;;off;OLDDEFAULT;off;0;100;0;1;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;;1;;;;1.5;none;0;off;0;none;none;;;;;;-1;2100;3;2050;1;;;3;1.05;off;1;none;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;; +SSP2-lowDem_calib;0;SSP2-Base_covidCalib;;gdp_SSP2_lowEn;;;;;1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ___Baselines___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP2-Base;0;;;gdp_SSP2EU;medOil;medGas;medCoal;load;5;off;uncalibrated;off;;off;RCP26_50;off;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix1;none;0.01;;1;;;;1.5;none;0;off;0;none;none;;;;;;-1;2100;3;2050;1;;;3;1.05;off;1;none;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;SSP2-Base: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +SSP2-Base_d50;0;SSP2-Base;;;;;;;;magicc;HADCRUT4;KotzWenz;med;;RCP26_50;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d50: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +# ___NO_DAMAGES___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +h_cpol_noUkr;NGFS;SSP2-Base;;;;;;;;;;;;;;;;;;;;;;;;;Mix2;none;;;;;0;0;1.5;rcp45;3;off;0;NPi;none;;;;;;1;2100;;2050;9;;;3;1.05;100;;NPi2018;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;h_cpol: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +h_cpol;NGFS;h_cpol_noUkr;EUR.pegas.worldPricemarkup 0.5;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;;h_cpol_noUkr;;; +h_ndc;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;Mix3;none;;;1;;;;1.5;rcp45;3;globallyOptimal;0;NDC;none;;;;;;1;2100;3;2050;;;;;;;;NDC;;;;3;;;;;;;2025;;h_cpol_noUkr;h_cpol;h_cpol_noUkr;h_ndc: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +o_1p5c;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;Mix4;heatpumps;;;1;;;;1.5;rcp20;9;globallyOptimal;560;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 4300, 2080.GLO.tax.t.CCS.biomass 4300;0.1;;;200;2045;6;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol_noUkr;h_cpol;;o_1p5c: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +o_lowdem;NGFS;o_1p5c;;gdp_SSP2_lowEn;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;;;;;;GLO 0.00125, CAZ_regi 0.0045, CHA_regi 0.004, EUR_regi 0.0045, IND_regi 0.004, JPN_regi 0.002, USA_regi 0.002;;;;;;;560;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 3800, 2080.GLO.tax.t.CCS.biomass 3800;0.1;;;;;1;;;;;;;;;;;;;;;;;;;;2025;;h_cpol_noUkr;h_cpol;;o_lowdem: Low Demand scenario +o_2c;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.5;;;Mix4;heatpumps;;;1;;;;1.5;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 2300, 2080.GLO.tax.t.CCS.biomass 2300;;;NGFS_v4_20pc;100;2080;3;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol_noUkr;h_cpol;;o_2c: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +d_delfrag;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.5;;;Mix3;heatpumps;;;;GLO 0.00125, CAZ_regi 0.0045, CHA_regi 0.004, EUR_regi 0.0045, IND_regi 0.004, JPN_regi 0.002, USA_regi 0.002;;;1.5;rcp26;9;globallyOptimal;1010;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 2300, 2080.GLO.tax.t.CCS.biomass 2300;;;;100;2080;;2050;;;;;;;;NDC;;;;2;;;;;;;2035;;h_cpol;h_cpol;;d_delfrag: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +d_strain;NGFS;d_delfrag;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;3;off;;NPi;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 2300, 2080.GLO.tax.t.CCS.biomass 2300;;;NGFS_v4_20pc;1;2100;;;;;;;;;;;;;;;;;;;;;2035;;h_cpol;h_cpol;;d_strain: Fragmented world +d_rap;0;h_cpol;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;Mix4;heatpumps;;GLO.trans 2, GLO.build 2;2;;;;1.5;rcp20;9;globallyOptimal;560;diffCurvPhaseIn2Lin;none;;;;;;200;2045;3;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol_noUkr;h_cpol;;d_rap: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +# ___WITH_DAMAGES___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +h_cpol_d50;d50;h_cpol;;;;;;;14;magicc;HADCRUT4;KotzWenz;med;off;RCP26_50;off;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol_noUkr;;;h_cpol_d50: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +h_ndc_d50;d50;h_ndc;;;;;;;14;magicc;HADCRUT4;KotzWenz;med;off;RCP26_50;off;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol_noUkr;h_cpol_d50;SSP2-Base;h_ndc_d50: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +o_1p5c_d50;d50;o_1p5c;;;;;;;14;magicc;HADCRUT4;KotzWenz;med;KotzWenzItr;RCP26_50;on;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol_noUkr;h_cpol_d50;;o_1p5c_d50: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +o_lowdem_d50;d50;o_lowdem;;;;;;;14;magicc;HADCRUT4;KotzWenz;med;KotzWenzItr;RCP26_50;on;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol_noUkr;h_cpol_d50;;o_lowdem_d50 +o_2c_d50;d50;o_2c;;;;;;;14;magicc;HADCRUT4;KotzWenz;med;KotzWenzItr;RCP26_50;on;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol_d50;;o_2c_d50: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +o_2c_d95;d95;o_2c;;;;;;;14;magicc;HADCRUT4;KotzWenz;med;KotzWenzItr;RCP26_95;on;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol_noUkr;h_cpol_d95;;o_2c_d95: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +d_strain_d50;d50;d_strain;;;;;;;14;magicc;HADCRUT4;KotzWenz;med;KotzWenzItr;RCP26_50;on;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol_d50;h_cpol_d50;;d_strain_d50: Fragmented World +d_rap_d50;d50;d_rap;;;;;;;14;magicc;HADCRUT4;KotzWenz;med;KotzWenzItr;RCP26_50;on;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol_noUkr;h_cpol_d50;;d_rap_d50: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +o_cba_d50;d50;;;;;;;;14;magicc;HADCRUT4;KotzWenz;med;KotzWenzItr;RCP26_50;on;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;;100;2080;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol_noUkr;h_cpol_d50;;o_cba_d50: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. diff --git a/main.gms b/main.gms index 15c85d043..6be613596 100755 --- a/main.gms +++ b/main.gms @@ -401,6 +401,7 @@ $setglobal regipol none !! def = none *' * (off): no damages on GDP *' * (DiceLike): DICE-like damages (linear-quadratic damages on GDP). Choose specification via cm_damage_DiceLike_specification *' * (BurkeLike): Burke-like damages (growth rate damages on GDP). Choose specification via cm_damage_BurkeLike_specification and cm_damage_BurkeLike_persistenceTime +*' * (KotzWenz): damage function based on Kotz et al. (2024) *' * (KWLike): Damage function based on Kalkuhl & Wenz (2020) *' * (KW_SE): Damage function based on Kalkuhl & Wenz (2020), but for the upper bound of the damages based on their standard error calculation *' * (KWTCint): Combines aggregate damages from Kalkuhl & Wenz (2020) and tropical cyclone damages from Krichene et al. (2022) @@ -412,6 +413,7 @@ $setGlobal damages off !! def = off *' * (off): *' * (DiceLikeItr): Internalize DICE-like damages (calculate the SCC) adjust cm_damages_SccHorizon. Requires cm_emiscen set to 9 for now. *' * (BurkeLikeItr): Internalize Burke-like damages (calculate the SCC) adjust cm_damages_SccHorizo. Requires cm_emiscen set to 9 for now. +*' * (KotzWenzItr): Internalize KotzWenz damages (calculate the SCC). Requires cm_emiscen set to 9. *' * (KWlikeItr): Internalize damage function based on Kalkuhl & Wenz (2020). Requires cm_emiscen set to 9 for now. *' * (KWlikeItrCPnash): Internalize damage function based on Kalkuhl & Wenz (2020), but with Nash SCC, i.e. each region only internalizes its own damages. Requires cm_emiscen set to 9 for now. *' * (KWlikeItrCPreg): Internalize damage function based on Kalkuhl & Wenz (2020), but with regional SCC instead of a global uniform price. Requires cm_emiscen set to 9 for now. @@ -1665,6 +1667,8 @@ $setGlobal cm_magicc_temperatureImpulseResponse off !! def = off !! $setGlobal cm_magicc_config OLDDEFAULT !! def = OLDDEFAULT ; {OLDDEFAULT, RCP26_[5,15,..,95], TCRE_[LOWEST,LOW,MEDIUM,HIGH,HIGHEST] } *' climate damages (HowardNonCatastrophic, DICE2013R, DICE2016, HowardNonCatastrophic, HowardInclCatastrophic, KWcross, KWpanelPop} $setGlobal cm_damage_DiceLike_specification HowardNonCatastrophic !! def = HowardNonCatastrophic +***cfg$gms$cm_KotzWenzPerc <- mean #def = mean; {low,med,mean,high} the percentile of the damage distribution from Kotz et al. (2024), low = 5th, high = 95th percentile +$setGlobal cm_KotzWenzPerc mean !! def = mean *** cfg$gms$cm_damage_Labor_exposure <- "low" # def = "low"; {low,high} $setGlobal cm_damage_Labor_exposure low !! def = low !! regexp = low|high *** cfg$gms$cm_TCssp <- "SSP2" #def = "SSP2"; {SSP2,SSP5} the scenario for which the damage function is specified - currently only SSP2 and SSP5 are available diff --git a/modules/50_damages/BurkeLike/not_used.txt b/modules/50_damages/BurkeLike/not_used.txt index 21ec74012..5627d4359 100644 --- a/modules/50_damages/BurkeLike/not_used.txt +++ b/modules/50_damages/BurkeLike/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_globalMeanTemperatureZeroed1900,input,questionnaire pm_damageMarginalT,input,questionnaire pm_damageMarginalTm1,input,questionnaire diff --git a/modules/50_damages/DiceLike/not_used.txt b/modules/50_damages/DiceLike/not_used.txt index affac1b01..a262e9b8e 100644 --- a/modules/50_damages/DiceLike/not_used.txt +++ b/modules/50_damages/DiceLike/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_regionalTemperature,input,questionnaire pm_damageGrowthRate,input,questionnaire cm_damages_BurkeLike_specification,input,questionnaire diff --git a/modules/50_damages/KWLike/not_used.txt b/modules/50_damages/KWLike/not_used.txt index 4c44ec3c6..d5e1161f6 100644 --- a/modules/50_damages/KWLike/not_used.txt +++ b/modules/50_damages/KWLike/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_globalMeanTemperatureZeroed1900,input,questionnaire cm_damages_BurkeLike_specification,input,questionnaire cm_damages_BurkeLike_persistenceTime,input,questionnaire diff --git a/modules/50_damages/KWTCint/not_used.txt b/modules/50_damages/KWTCint/not_used.txt index e36d3b939..7ae36cbac 100755 --- a/modules/50_damages/KWTCint/not_used.txt +++ b/modules/50_damages/KWTCint/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire cm_damages_BurkeLike_specification,input,questionnaire cm_damages_BurkeLike_persistenceTime,input,questionnaire pm_damageMarginal,input,questionnaire diff --git a/modules/50_damages/KW_SE/not_used.txt b/modules/50_damages/KW_SE/not_used.txt index 8db49cde6..3e070eeec 100755 --- a/modules/50_damages/KW_SE/not_used.txt +++ b/modules/50_damages/KW_SE/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_GDPGross,input,questionnaire pm_damageMarginalTC,input,questionnaire pm_GDPGrossIso,input,questionnaire diff --git a/modules/50_damages/KotzWenz/datainput.gms b/modules/50_damages/KotzWenz/datainput.gms index cd7a35047..6480a2254 100644 --- a/modules/50_damages/KotzWenz/datainput.gms +++ b/modules/50_damages/KotzWenz/datainput.gms @@ -1,35 +1,5 @@ -parameter f50_beta1(nboot,iso) "damage function parameter for temperature" -/ -$ondelim -$include "./modules/50_damages/KotzWenz/input/beta1_for_REMIND.csv" -$offdelim -/ -; -parameter f50_beta2(nboot,iso) "damage function parameter for temperature^2" -/ -$ondelim -$include "./modules/50_damages/KotzWenz/input/beta2_for_REMIND.csv" -$offdelim -/ -; -parameter f50_maxtemp(nboot) "maximum temperature for which damage function is valid" -/ -$ondelim -$include "./modules/50_damages/KotzWenz/input/maxtemp_for_REMIND.csv" -$offdelim -/ -; - -*read in national population and gdp for weighted regional aggregation -*table f50_countryPop(tall,iso,all_POPscen) -*$ondelim -*$include "./modules/50_damages/KotzWenz/input/f50_pop.cs3r" -*$offdelim -*; -*p50_isoPop(tall,iso)=f50_countryPop(tall,iso,"%cm_POPscen%"); - -table f50_countryGDP(tall,iso,all_GDPscen) "country level GDP" +table f50_countryGDP(tall,iso,all_GDPscen) "country level GDP from SSPs" $ondelim $include "./modules/50_damages/KotzWenz/input/f50_gdp.cs3r" $offdelim @@ -39,9 +9,6 @@ $offdelim *interpolate to annual time steps *loop(ttot$(ttot.val ge 2005), * loop(tall$(pm_tall_2_ttot(tall,ttot)), -* p50_isoPop(tall,iso) = -* (1-pm_interpolWeight_ttot_tall(tall))*p50_isoPop(ttot,iso) -* + pm_interpolWeight_ttot_tall(tall)*p50_isoPop(ttot+1,iso); * p50_isoGDP(tall,iso) = * (1-pm_interpolWeight_ttot_tall(tall))*p50_isoGDP(ttot,iso) * + pm_interpolWeight_ttot_tall(tall)*p50_isoGDP(ttot+1,iso); @@ -50,7 +17,9 @@ $offdelim *keep constant after 2150 as it is needed until 2300 for SCC calculation *p50_isoGDP(tall,iso)$(tall.val ge 2150) = p50_isoGDP("2150",iso); -*p50_isoPop(tall,iso)$(tall.val ge 2150) = p50_isoPop("2150",iso); + +* initialize +pm_damage(tall,regi) = 1; *calculate and interpolate country GDP fraction of regional GDP for SSP2EU scenario, country GDP is in PPP, regional GDP in trl MER! pm_GDPfrac(tall,iso)=f50_countryGDP(tall,iso,"%cm_GDPscen%")/1000000/(sum(regi2iso(regi,iso),pm_gdp(tall,regi)/pm_shPPPMER(regi))+1e-9); @@ -65,5 +34,3 @@ display pm_GDPfrac; pm_GDPfrac(tall,iso)$(tall.val ge 2150) = pm_GDPfrac("2150",iso); -* initialize -pm_damage(tall,regi) = 1; diff --git a/modules/50_damages/KotzWenz/declarations.gms b/modules/50_damages/KotzWenz/declarations.gms index 92a192da5..79be5ca45 100644 --- a/modules/50_damages/KotzWenz/declarations.gms +++ b/modules/50_damages/KotzWenz/declarations.gms @@ -1,15 +1,9 @@ Parameters -pm_GDPfrac(tall,iso) "country fraction of regional GDP" -p50_globalMeanTemp2020(nboot,tall) "global mean temperature difference to 2020" -p50_damageIso(tall,iso,nboot) "country level damage factor" -p50_damageIsoPerc(tall,iso) "damage percentile - currently mean" +pm_GDPfrac(tall,iso) "GDP fraction of a country in its region" +p50_damageIsoPerc(tall,iso,percentile) "damage factor for country and bootstrapping" pm_damage(tall,all_regi) "regional damage factor" -p50_damageMarginalIso(tall,iso,nboot) "country level damage marginal" -p50_damageMarginalIsoPerc(tall,iso) "country level marginal percentile - currently mean" -pm_damageMarginal(tall,all_regi) "regional damage marginal" -p50_r(nboot) "needed for percentile computation" -p50_pct(*) /median 50.0, 95 95.0/ "possible percentiles for damages" -p50_rank(nboot) "needed for percentile computation" +pm_damageMarginalIsoPerc(tall,iso,percentile) "marginal damage for country and bootstrapping" +pm_damageMarginal(tall,all_regi) "regional marginal damage" ; positive variable diff --git a/modules/50_damages/KotzWenz/not_used.txt b/modules/50_damages/KotzWenz/not_used.txt index 3ea39eb57..1f9f52dbc 100644 --- a/modules/50_damages/KotzWenz/not_used.txt +++ b/modules/50_damages/KotzWenz/not_used.txt @@ -8,6 +8,7 @@ name,type,reason pm_damageMarginalT,input,questionnaire pm_damageMarginalTm1,input,questionnaire pm_damageMarginalTm2,input,questionnaire +pm_globalMeanTemperatureZeroed1900,input,questionnaire pm_temperatureImpulseResponseCO2,input,questionnaire pm_GDPGross,input,questionnaire cm_damage_KWSE,input,questionnaire diff --git a/modules/50_damages/KotzWenz/postsolve.gms b/modules/50_damages/KotzWenz/postsolve.gms index d62de18b6..6374293ec 100644 --- a/modules/50_damages/KotzWenz/postsolve.gms +++ b/modules/50_damages/KotzWenz/postsolve.gms @@ -1,60 +1,16 @@ -p50_globalMeanTemp2020(nboot,tall)$(tall.val ge 2020 and tall.val le 2300) = - pm_globalMeanTemperatureZeroed1900(tall)-pm_globalMeanTemperatureZeroed1900("2020") -; - -*set temperature to max temp for each realization if it is higher -loop(tall, - loop(nboot, - if((p50_globalMeanTemp2020(nboot,tall) gt f50_maxtemp(nboot)), - p50_globalMeanTemp2020(nboot,tall) = f50_maxtemp(nboot) -); -); -); - -*calculate damage factor for each country and realization -p50_damageIso(tall,iso,nboot)$(tall.val gt 2020 and tall.val le 2300) = - f50_beta1(nboot,iso)/100*p50_globalMeanTemp2020(nboot,tall)+f50_beta2(nboot,iso)/100*p50_globalMeanTemp2020(nboot,tall)*p50_globalMeanTemp2020(nboot,tall); - -*desired percentile of damages -*hardcode mean for now, think about percentiles later -p50_damageIsoPerc(tall,iso)$(tall.val gt 2020 and tall.val le 2300) = - sum(nboot,p50_damageIso(tall,iso,nboot))/1000 -; - -*marginal -p50_damageMarginalIso(tall,iso,nboot)$(tall.val gt 2020 and tall.val le 2300) = - f50_beta1(nboot,iso)/100+2*f50_beta2(nboot,iso)/100*p50_globalMeanTemp2020(nboot,tall) -; - -p50_damageMarginalIsoPerc(tall,iso)$(tall.val gt 2020 and tall.val le 2300) = - sum(nboot,p50_damageMarginalIso(tall,iso,nboot))/1000 -; - -*loop(tall $ (tall.val ge 2020 and tall.val le 2300), -* loop(iso, -* p50_rank(nboot)=p50_damageIso(tall,iso,nboot); -*$libInclude rank p50_rank nboot p50_r p50_pct -* p50_damageIsoPerc(tall,iso)=p50_pct("median"); -** p50_damageIsoPerc(tall,iso)=p50_pct("%cm_DamPerc%") - -* p50_rank(nboot)=p50_damageMarginalIso(tall,iso,nboot); -*$libInclude rank p50_rank nboot p50_r p50_pct -* p50_damageMarginalIsoPerc(tall,iso)=p50_pct("median"); -** p50_damageMarginalIsoPerc(tall,iso)=p50_pct("%cm_DamPerc%") -*display p50_pct; -* ); -*); +execute "Rscript run_KotzWenz_damages.R" +execute_loadpoint 'pm_KotzWenz_damageIso' p50_damageIsoPerc=pm_damageIso; +execute_loadpoint 'pm_KotzWenz_damageMarginalIso' pm_damageMarginalIsoPerc=pm_damageMarginalIso; pm_damageMarginal(tall,regi)$(tall.val gt 2020 and tall.val le 2300) = -* sum(regi2iso(regi,iso),p50_damageMarginalIsoPerc(tall,iso)*p50_isoGDP(tall,iso))/sum(regi2iso(regi,iso),p50_isoGDP(tall,iso)) - sum(regi2iso(regi,iso),p50_damageMarginalIsoPerc(tall,iso)*pm_GDPfrac(tall,iso)) + sum(regi2iso(regi,iso),pm_damageMarginalIsoPerc(tall,iso,"%cm_KotzWenzPerc%")*pm_GDPfrac(tall,iso)) ; *regional damage using SSP country level GDP as weight pm_damage(tall,regi)$(tall.val gt 2020 and tall.val le 2300) = - 1-sum(regi2iso(regi,iso),p50_damageIsoPerc(tall,iso)*pm_GDPfrac(tall,iso)) + 1-sum(regi2iso(regi,iso),p50_damageIsoPerc(tall,iso,"%cm_KotzWenzPerc%")*pm_GDPfrac(tall,iso)) ; -display p50_damageIsoPerc,pm_damage,pm_damageMarginal; +display pm_damage,pm_damageMarginal; diff --git a/modules/50_damages/KotzWenz/sets.gms b/modules/50_damages/KotzWenz/sets.gms index 70120489d..daa7834a1 100644 --- a/modules/50_damages/KotzWenz/sets.gms +++ b/modules/50_damages/KotzWenz/sets.gms @@ -3,4 +3,9 @@ nboot "boot strapping realisations of damage function parameters" / 1*1000 / +percentile "possible percentiles of damage function as coded in the R script" + / + low,mean,med,high + / + ; diff --git a/modules/50_damages/Labor/not_used.txt b/modules/50_damages/Labor/not_used.txt index 85cfaee50..8664f548b 100755 --- a/modules/50_damages/Labor/not_used.txt +++ b/modules/50_damages/Labor/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_globalMeanTemperatureZeroed1900,input,questionnaire pm_temperatureImpulseResponseCO2,input,questionnaire pm_GDPGross,input,questionnaire diff --git a/modules/50_damages/TC/not_used.txt b/modules/50_damages/TC/not_used.txt index 5b22dda33..9ef5d0674 100755 --- a/modules/50_damages/TC/not_used.txt +++ b/modules/50_damages/TC/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_temperatureImpulseResponseCO2,input,questionnaire cm_damages_BurkeLike_specification,input,questionnaire cm_damages_BurkeLike_persistenceTime,input,questionnaire diff --git a/modules/50_damages/off/not_used.txt b/modules/50_damages/off/not_used.txt index 16fb7c646..6aa74b3db 100644 --- a/modules/50_damages/off/not_used.txt +++ b/modules/50_damages/off/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_globalMeanTemperatureZeroed1900,input,questionnaire pm_regionalTemperature,input,questionnaire pm_damage,input,questionnaire diff --git a/modules/51_internalizeDamages/BurkeLikeItr/not_used.txt b/modules/51_internalizeDamages/BurkeLikeItr/not_used.txt index 67d73dcb9..6d7ac9b5c 100644 --- a/modules/51_internalizeDamages/BurkeLikeItr/not_used.txt +++ b/modules/51_internalizeDamages/BurkeLikeItr/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_damageMarginalT,input,questionnaire pm_damageMarginalTm1,input,questionnaire pm_damageMarginalTm2,input,questionnaire diff --git a/modules/51_internalizeDamages/DiceLikeItr/not_used.txt b/modules/51_internalizeDamages/DiceLikeItr/not_used.txt index f46ff4339..788c95eeb 100644 --- a/modules/51_internalizeDamages/DiceLikeItr/not_used.txt +++ b/modules/51_internalizeDamages/DiceLikeItr/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_tempScaleGlob2Reg,input,questionnaire pm_damage,input,questionnaire pm_damageGrowthRate,input,questionnaire diff --git a/modules/51_internalizeDamages/KWTCintItr/not_used.txt b/modules/51_internalizeDamages/KWTCintItr/not_used.txt index 599fe3418..3bfc50fab 100755 --- a/modules/51_internalizeDamages/KWTCintItr/not_used.txt +++ b/modules/51_internalizeDamages/KWTCintItr/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire cm_damages_BurkeLike_persistenceTime,input,questionnaire pm_damageMarginal,input,questionnaire pm_cesdata,input,questionnaire diff --git a/modules/51_internalizeDamages/KW_SEitr/not_used.txt b/modules/51_internalizeDamages/KW_SEitr/not_used.txt index a1d65ba51..f06176996 100755 --- a/modules/51_internalizeDamages/KW_SEitr/not_used.txt +++ b/modules/51_internalizeDamages/KW_SEitr/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire cm_damages_BurkeLike_persistenceTime,input,questionnaire pm_damageMarginal,input,questionnaire pm_cesdata,input,questionnaire diff --git a/modules/51_internalizeDamages/KWlikeItr/not_used.txt b/modules/51_internalizeDamages/KWlikeItr/not_used.txt index 56e98ee15..d4a0917e6 100644 --- a/modules/51_internalizeDamages/KWlikeItr/not_used.txt +++ b/modules/51_internalizeDamages/KWlikeItr/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_cesdata,input,questionnaire pm_lab,input,questionnaire pm_interpolWeight_ttot_tall,input,questionnaire diff --git a/modules/51_internalizeDamages/KWlikeItrCPnash/not_used.txt b/modules/51_internalizeDamages/KWlikeItrCPnash/not_used.txt index 6c71fe4bf..94fb08aea 100755 --- a/modules/51_internalizeDamages/KWlikeItrCPnash/not_used.txt +++ b/modules/51_internalizeDamages/KWlikeItrCPnash/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_cesdata,input,questionnaire pm_lab,input,questionnaire pm_interpolWeight_ttot_tall,input,questionnaire diff --git a/modules/51_internalizeDamages/KWlikeItrCPreg/not_used.txt b/modules/51_internalizeDamages/KWlikeItrCPreg/not_used.txt index 7c15785d8..c64a86f7c 100644 --- a/modules/51_internalizeDamages/KWlikeItrCPreg/not_used.txt +++ b/modules/51_internalizeDamages/KWlikeItrCPreg/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire cm_damages_BurkeLike_persistenceTime,input,questionnaire pm_damageMarginal,input,questionnaire pm_cesdata,input,questionnaire diff --git a/modules/51_internalizeDamages/KotzWenzCPreg/not_used.txt b/modules/51_internalizeDamages/KotzWenzCPreg/not_used.txt index adf8621c6..278193e7d 100644 --- a/modules/51_internalizeDamages/KotzWenzCPreg/not_used.txt +++ b/modules/51_internalizeDamages/KotzWenzCPreg/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginal,input,questionnaire pm_damageMarginalT,input,questionnaire cm_damages_BurkeLike_persistenceTime,input,questionnaire pm_tempScaleGlob2Reg,input,questionnaire @@ -19,7 +20,6 @@ pm_tall_2_ttot,input,questionnaire pm_damageProd,input,questionnaire pm_damageTC,input,questionnaire pm_damageGrowthRateTC,input,questionnaire -pm_GDPfrac,input,questionnaire pm_damageMarginalTC,input,questionnaire pm_GDPGrossIso,input,questionnaire pm_damageImp,input,questionnaire diff --git a/modules/51_internalizeDamages/KotzWenzCPreg/postsolve.gms b/modules/51_internalizeDamages/KotzWenzCPreg/postsolve.gms index eeb9c62d2..f1c4b0326 100644 --- a/modules/51_internalizeDamages/KotzWenzCPreg/postsolve.gms +++ b/modules/51_internalizeDamages/KotzWenzCPreg/postsolve.gms @@ -19,7 +19,8 @@ p51_scc(tall,regi)$((tall.val ge 2020) and (tall.val le 2150)) = 1000 * * pm_consPC(tall,regi)/pm_consPC(tall2,regi2) * pm_GDPGross(tall2,regi2) * pm_temperatureImpulseResponseCO2(tall2,tall) - * pm_damageMarginal(tall2,regi2) +* * pm_damageMarginal(tall2,regi2) + * sum(regi2iso(regi2,iso),pm_damageMarginalIsoPerc(tall2,iso,"%cm_KotzWenzPerc%")*pm_GDPfrac(tall2,iso)) )) ; diff --git a/modules/51_internalizeDamages/KotzWenzItr/not_used.txt b/modules/51_internalizeDamages/KotzWenzItr/not_used.txt index e7bc34ad9..dc16d0223 100644 --- a/modules/51_internalizeDamages/KotzWenzItr/not_used.txt +++ b/modules/51_internalizeDamages/KotzWenzItr/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginal,input,questionnaire cm_damages_BurkeLike_persistenceTime,input,questionnaire pm_tempScaleGlob2Reg,input,questionnaire pm_damage,input,questionnaire @@ -19,7 +20,6 @@ pm_tall_2_ttot,input,questionnaire pm_damageProd,input,questionnaire pm_damageTC,input,questionnaire pm_damageGrowthRateTC,input,questionnaire -pm_GDPfrac,input,questionnaire pm_damageMarginalTC,input,questionnaire pm_GDPGrossIso,input,questionnaire pm_damageImp,input,questionnaire diff --git a/modules/51_internalizeDamages/KotzWenzItr/postsolve.gms b/modules/51_internalizeDamages/KotzWenzItr/postsolve.gms index 12858b423..df3fd9889 100644 --- a/modules/51_internalizeDamages/KotzWenzItr/postsolve.gms +++ b/modules/51_internalizeDamages/KotzWenzItr/postsolve.gms @@ -19,7 +19,8 @@ p51_scc(tall)$((tall.val ge 2020) and (tall.val le 2150)) = 1000 * * pm_consPC(tall,regi2)/pm_consPC(tall2,regi2) * pm_GDPGross(tall2,regi2) * pm_temperatureImpulseResponseCO2(tall2,tall) - * pm_damageMarginal(tall2,regi2) +* * pm_damageMarginal(tall2,regi2) + * sum(regi2iso(regi2,iso),pm_damageMarginalIsoPerc(tall2,iso,"%cm_KotzWenzPerc%")*pm_GDPfrac(tall2,iso)) ) ) ; diff --git a/modules/51_internalizeDamages/LabItr/not_used.txt b/modules/51_internalizeDamages/LabItr/not_used.txt index 24b7f0225..80561f79d 100755 --- a/modules/51_internalizeDamages/LabItr/not_used.txt +++ b/modules/51_internalizeDamages/LabItr/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire cm_damages_BurkeLike_persistenceTime,input,questionnaire pm_damageGrowthRate,input,questionnaire pm_damageMarginalT,input,questionnaire diff --git a/modules/51_internalizeDamages/TCitr/not_used.txt b/modules/51_internalizeDamages/TCitr/not_used.txt index c64d6eaba..52f051238 100755 --- a/modules/51_internalizeDamages/TCitr/not_used.txt +++ b/modules/51_internalizeDamages/TCitr/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_cesdata,input,questionnaire pm_lab,input,questionnaire pm_GDPGross,input,questionnaire diff --git a/modules/51_internalizeDamages/off/not_used.txt b/modules/51_internalizeDamages/off/not_used.txt index 8e37f7372..b35ea2b80 100644 --- a/modules/51_internalizeDamages/off/not_used.txt +++ b/modules/51_internalizeDamages/off/not_used.txt @@ -5,6 +5,7 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name,type,reason +pm_damageMarginalIsoPerc,input,questionnaire pm_temperatureImpulseResponseCO2,input,questionnaire pm_tempScaleGlob2Reg,input,questionnaire pm_damage,input,questionnaire diff --git a/scripts/input/run_KotzWenz_damages.R b/scripts/input/run_KotzWenz_damages.R new file mode 100644 index 000000000..92a6878f4 --- /dev/null +++ b/scripts/input/run_KotzWenz_damages.R @@ -0,0 +1,76 @@ +# | (C) 2006-2020 Potsdam Institute for Climate Impact Research (PIK) +# | authors, and contributors see CITATION.cff file. This file is part +# | of REMIND and licensed under AGPL-3.0-or-later. Under Section 7 of +# | AGPL-3.0, you are granted additional permissions described in the +# | REMIND License Exception, version 1.0 (see LICENSE file). +# | Contact: remind@pik-potsdam.de +# Calculate damage factor and marginal damages from Kotz et al. (2024) for the full distribution +# FP +print("Calculating damages and marginal damages for SCC ") +require(dplyr) +require(gdxrrw) +igdx(system("dirname $( which gams )", intern = TRUE)) + +beta1 <- read.csv("../../modules/50_damages/KotzWenz/input/PERC_scaling_coefs_ssp2_ssp585_lagdiff_lintren_fix_spec_NL_8_9_10_movfix_30_Nboot1000_beta1.csv") %>% select(-"X") +beta2 <- read.csv("../../modules/50_damages/KotzWenz/input/PERC_scaling_coefs_ssp2_ssp585_lagdiff_lintren_fix_spec_NL_8_9_10_movfix_30_Nboot1000_beta2.csv") %>% select(-"X") +maxtemp <- read.csv("../../modules/50_damages/KotzWenz/input/PERC_scaling_coefs_ssp2_ssp585_lagdiff_lintren_fix_spec_NL_8_9_10_movfix_30_Nboot1000_maxGMT.csv") %>% select(-"X") + +getTemperatureMagicc = function(file = "./magicc/DAT_SURFACE_TEMP.OUT"){ + x = read.table(file, skip = 19,header = T) + x = x[,c(1,2)] + names(x) = c('period','value') + x$period = as.integer(as.character(x$period)) + # Get relevant years + years <- x[x$period >= 2005 & x$period <= 2300,1] + return(x[x$period %in% years,]) +} + +temp <- getTemperatureMagicc() %>% subset(period >= 2020) %>% mutate(value=value-value[1]) + +countries <- colnames(beta1) + +# calculate damage and marginal damage for mean, median, 5th and 95th percentile of damage distribution for each country +# if country temperature is above the robust range of the damages (indicated by maxtemp) the temperature is set to maxtemp + +alldam <- tibble(tall=integer(),iso=character(),low=double(),med=double(),mean=double(),high=double()) +alldam_marg <- tibble(tall=integer(),iso=character(),low_marg=double(),med_marg=double(),mean_marg=double(),high_marg=double()) + +for(i in countries){ + df <- as.data.frame(cbind(beta1[,i],beta2[,i],maxtemp[,i])) %>% + rename(beta1=V1,beta2=V2,maxtemp=V3) + dam <- merge(temp,df) + dam[which(dam$maxtemp < dam$value),]$value <- + dam[which(dam$maxtemp < dam$value),]$maxtemp + dam$dam <- dam$beta1/100*dam$value+dam$beta2/100*dam$value^2 + dam$marginal <- dam$beta1/100+2*dam$beta2/100*dam$value + dam_q <- dam %>% group_by(period) %>% + summarize(low=quantile(dam,probs=0.05),med=quantile(dam,probs=0.5),mean=mean(dam), + high=quantile(dam,probs=0.95),low_marg=quantile(marginal,probs=0.05), + med_marg=quantile(marginal,probs=0.5),mean_marg=mean(marginal), + high_marg=quantile(marginal,probs=0.95)) %>% ungroup() + dam_q$iso = i + alldam <- rbind(alldam,rename(select(dam_q,c("iso","period","low","med","mean","high")),tall=period)) + alldam_marg <- rbind(alldam_marg,rename(select(dam_q,c("iso","period","low_marg","med_marg","mean_marg","high_marg")),tall=period)) +} + +writeToGdx = function(file,df,name){ + df$tall = factor(df$tall) + df$iso = factor(df$iso) + df$percentile = factor(df$percentile) + attr(df,which = 'symName') = name + attr(df,which = 'domains') = c('tall','iso','percentile') + attr(df,which = 'domInfo') = 'full' + + wgdx.lst(file,df,squeeze = F) +} + +alldam <- reshape2::melt(alldam,id.vars=c("tall","iso")) %>% rename(percentile=variable) +alldam_marg <- reshape2::melt(rename(alldam_marg,low=low_marg,med=med_marg,mean=mean_marg,high=high_marg),id.vars=c("tall","iso")) %>% rename(percentile=variable) + +# write to GDX: +writeToGdx('pm_KotzWenz_damageIso',alldam,'pm_damageIso') +writeToGdx('pm_KotzWenz_damageMarginalIso',alldam_marg,'pm_damageMarginalIso') +print("...done.") + + +